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A method to evaluate reciprocal interbead distance averages is proposed. These averages are computed 
in the frame of the elastic necklace model with the distribution function of a linear polymer chain 
distorted by the flow. The resulting set of coupled equations are solved numerically for chains of 
increasing size, up to Z = 9 beads. 

I N T R O D U C T I O N  

The exact diagonalization procedure 1'2 of the H A  and H 
matrices in the Zimm 3 theory for the ideally flexible 
necklace model of randomly coiled linear macromo- 
lecules in laminar flow made possible the calculation of 
the intrinsic stress and birefringence tensors in the limit of 
vanishing gradient 4. In such a case, the coil is not yet 
noticeably deformed by the flow, and the matrix elements 
of the hydrodynamic tensor/4 5 remain independent of the 
gradient. In fact, premature averaging of the Oseen tensor 
in order to linearize the hydrodynamic diffusion equation 
replaces the original tensor interaction by a scalar in- 
teraction proportional to an average value of the inverse 
interbead distance. The averages are taken with the 
unperturbed distribution functionS: 

(6)" m2'2 
bo 

(1) 

for any pair of beads located at rs ~, r k and j , k  = O, 1 . . . . .  N .  
(N is the number of statistically independent links and 
m = IJ - kl). 

In laminar flow, the molecule gets expanded and 
oriented, and the solution shows streaming biref- 
ringence s. Deformation changes, the intramolecular dis- 
tances and the change of shape of the molecule are 
accurately described by the exact distribution function of 
the coil in non-zero gradient 6. 

This paper proposes a method to evaluate the inverse 
interbead distance averages of a flexible linear macro- 
molecule in a transverse gradient flow in order to get a 
more appropriate description of the gradient-dependent 
properties of dilute polymer solutions with the neck- 
lace model. 

NOTATION 

In the necklace model, the molecule is represented by 
Z = N + 1 beads (numbered from 0 to N) connected by N 
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elastic links. The root mean square length of each link in 
solution at rest is b0. We define a configuration of the 
molecule in the space of normal coordinates by the 3Z- 
dimensional vector 

~-{u~},  k =0 ,  1 . . . . .  N; ~=1,  2, 3 (2) 

The index k runs over the normal modes and the index ct 
labels the Cartesian components of each one. These 
components of the Uh-mode are usually called (~k, (k, rlk) in 
the literature 1-6 but the choice (Uk 1, " a • u~, Uk) lS better suited 
for our purposes. 

The steady state solution of the linearized diffusion 
equation with a constant transverse gradient is 6 

0(8)  = k__~ ~Ok(Sk) (3) 

where 

) ~Ok(blk) = C k exp - 2b~. Sk (fl)Ukl'lk 
\ 0~,~ =1 

(4) 

are the distribution functions of the independent modes. 
Here S~,,~' are the matrix elements of the 3 × 3 symmetrical 
matrix Sk: 

1 0 

~ 3#k (5) 
Sk = _ flk 1 + fl~ 0 

0 3gk 

and flk = fl/•k" The quantity fl is the reduced rate of shear s 
and 2 k, u k are the non-zero eigenvalues of the H A  and A 
matrices, respectively. The value of the constant 
C k = (3/~k/r~(1 + fl2))3/2 follows from the normalization 
condition: 

dgk ~Ok( gk) = 1 (6) 
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If we define the 3N x 3N symmetrical matrix S by its 
matrix elements: 

s~:-  v~,=, 
- S k 6kk, (7) 

the normalized distribution function (3) can be written 
(b0 = 1): 

0(u-} = C. exp - 5  2 ~ S~,~,: u~, u~: (8a) 
~'k,kr = la,cv = 1 

or, in a more compact form: 

where C = lICK and ~r i s  the transposed vector U. From 
k 

now on, the symbol ( . . . .  )~ stands for the mean values 
computed with the weight given by equation (8). 

The solution of the eigenvalue problem s'5 

O - '  HA Q = A (9) 

brings the transformation matrix Q from normal coor- 
--*--  1 2 dinates to the position vectors r j = (x j, x j, x}  (j = O, 1 . . . .  N) 

of the beads: 

N 

x~= ~, Qjeu~ = 1, 2, 3 (10) 
e=O 

Finally, the matrix elements of the hydrodynamic in- 
teraction tensor H are: 

Hjk = bjk +, j~h* (R;k')(1 -- 6j,) (11) 

where h* is the hydrodynamic interaction parameter ~. 

MEAN VALUES 

In the usual treatment, it is assumed gradient independent 
inverse distances R~, ~ between any two beads separated 
by m links since they are computed as the average value 
(R~, ~)0 with solution at rest. Due to the constancy of H 
and consequently of A, it turns out that the theory fails to 
describe the gradient dependence of some components of 
the stress tensor, such as the intrinsic viscosity. 

This limitation of the model can be removed in the 
frame of a 'preaveraging procedure' by replacing the 
cartesian components of the Oseen tensor T~' with the 

(Tm )~. This approximation preserves the tensor average ==" 
character of the hydrodynamic interaction since there will 
be, in general, non-vanishing contributions for a ~ t '  
coming from the off-diagonal matrix elements of Sk 
(Equation 5). We shall assume in the following that we can 
replace the tensor (T~)~ by the scalar (6rCt/o)-l(R~,l)~ 
times the 3 x 3 identity tensor. Here r/o is the viscosity of 
the solvent. 

Our main objective is the computation of the averages 
IINI,, defined as: 

(12) 

for a chain of Z = N + 1 beads. It is a 3N-dimensional 
integral of the inverse interbead distance expressed as a 
function of the normal modes, weighted with the norma- 
lized distribution function equation (8). The two beads are 
separated by m links along the chain. As /3=0, the 
averages I~  I are independent of N and are given by 
equation (1). 

We define R ~  by the identity: 

09 

R~ 1= ~- exp - t2R dt 

Now, the interbead position vector Rm is 

(13) 

N N 

R,=r~--rk= ~ (Qje-Qke)ffe = ~ f~ ff'e (14) 
e = l  e = l  

where Qj~ are the matrix elements of the transformation 
matrix Q for a given rate of shear/3. We omit the term with 
e = 0 because the first column of Q is a constant and the 
difference vanishes. 

The squared distance R 2 gives 

N 3 

2 _ ' ~' (15) R m -  E E fefe t~'U~eUe ' 
e,et = la,oo = 1 

The introduction of the sums on ~ and a' allows this 
quadratic form in the space of the normal coordinates to 
be written as 

R 2 = UTFU (16) 

where F is a 3N × 3N matrix with matrix elements F~', 
defined: 

F~e; = Fee, t~ =a, = L L ,  6=~, (17) 

The identity (equation 13) reads now 

oo 

( ; ) l ] 2 f  { t 2 e ~ =  ~ } 
= - F~: = ~ '  RT, 1 dt e x p  2 e ,  = 1 . . . . .  1 Ue ue' (18) 

0 

This integral is a realization of the non-linear dependence 
of the inverse distance R~, 1 on the normal modes U. 

When we introduce this representation of R~, ~ in the 
expression (12) for the averages and interchange the order 
of integration, we get 

at3 

, 1 _ _  . . . .  
I~ '= ~ C at u e x p ~ - - ~ L O e e ,  UeUe,)~ 

\ e,eeactt / 3  
0 

where 

(19) 

Oaa, = q~aap -I- t 2 ==t . . . .  e . . . .  Fee, ( 2 0 )  

are the matrix elements of 0 m = S + t2F. The first term in 
equation (20) mixes two of the components of each normal 
mode, and the second one mixes the same cartesian 
component of the normal modes. The assumed isotropy of 
the hydrodynamic interaction is responsible for this 
simplification in the structure of the matrix 0m. 
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Table 1 The zeroth-order averages I(Nm ) (m = 1, 2 . . . . .  N) computed as functions of the reduced rate of shear 3• for N = 2 

3 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

m 
1 1.382 1.350 1.262 1.135 0.988 0.841 0.703 0.581 0.477 0.391 0.320 
2 0.977 0.953 0.886 0.791 0.683 0.576 0.477 0.391 0.318 0.258 0.210 

Table 2 As Table 1, for  N = 4 

3 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

m 

1 1.382 1.256 0.972 0.682 0.455 0.298 0.194 0.127 0.083 0.055 0.037 
2 0.977 0.882 0.672 0.460 0.300 0.192 0.122 0.078 0.051 0.033 0.022 
3 0.798 0.715 0.538 0.363 0.233 0.147 0.093 0.059 0.038 0.025 0.016 
4 0.691 0.617 0.463 0.311 0.200 0.126 0.079 0.051 0.032 0.021 0.014 

Table 3 As Table I• for N = 6 

0 0.1 0.2 0.3 0.4 0.5 

m 

1 1.382 1.087 0.622 0.320 0.162 0.082 
2 0.977 0.760 0.424 0.211 0.103 0.051 
3 0.798 0.613 0.333 0.162 0.077 0.038 
4 0.691 0.525 0.281 0.134 0.064 0.031 
5 0.618 0.470 0.247 0.118 0.055 0.027 
6 0.564 0.427 0.226 0.107 0.051 0.024 

Table4 As Table 1, f e r N = 8  

3 

0 0.1 0.2 0.3 0.4 0.5 

m 
1 1.382 0.869 0.350 0.133 0.051 0.020 
2 0.977 0.607 0.236 0.086 0.032 0.012 
3 0.798 0.487 0.183 0.065 0.024 0.009 
4 0.691 0.415 0.151 0.052 0.019 0.007 
5 0.618 0.365 0.130 0.044 0.016 0.006 
6 0.564 0.330 0.116 0.039 0.014 0.005 
7 0.522 0.303 0.106 0.036 0.013 0.005 
8 0.489 0.284 0.099 0.033 0.012 0.004 

The 3N-dimensional integral on the normal modes can 
be explicitly performed since the argument of the expon- 
ential is a real, symmetric quadractic form in the in- 
tegration variables U. The result is 

dtJ exp( - 12tJr0m~J ) = (2rr)3N/2[det 0,.3 - 1/2 (21) 

Finally, our main result is achieved: the averages I~) 
may be computed from one-dimensional integrals, as 

O7~ 

/ / ~ 1  /2 f l~'(fl)=~2 ) (27Q 3N/2 C dt[det 0,,] -1/2 

0 

(22) 
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Figure I The zeroth-order averages/}) N) plotted as functions of the 
scaled rate of shear 31.. The lowest non-zero eigenvalues ;k~o)/v are 0.75• 
0.3569• 0.2161 and 0.1482 for N = 2, 4, 6 and 8, respectively 

The last equation, together with equations (9) and (11), 
define a set of non-linear coupled equations for the 
unknown eigenvalues 2k(k = 1, 2 ..... N) and can be solved 
self-consistently for each value of the parameter ft. 

NUMERICAL RESULTS 

The evaluation of the mean values (22) requires the 
knowledge of the eigenvectors of the non-symmetrical 
matrix HA. In the literature, there are several procedures to 
find them when the averages I~) are given by equation (1). 
The reader is referred to a recent discussion by Zimm 7 on 
this subject. A method is followed that was proposed by 
Fong and Peterlin 2, where the eigenvalues of the matrix A 
are uhity and 2~ °~ = p~o~ for any k. (The superscript refers to 
the limit fl = 0). 

The set of equations (9), (11) and (22) can be solved by 
successive approximations starting from the solution of 
the eigenvalue problem (9) and (11) for fl=0. From the 
eigenvalues and eigenvectors, one constructs the matrices 
S and F, respectively, for a given value of the parameter ft. 
The determinant of the 0,, matrix is then evaluated for 
each point of the integration variable t, and the in- 
tegrations are performed with the usual quadrature 
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Figure 2 The zeroth-order normalized averages I (N) plotted as o,N 
functions of the scaled rate of shear/31 

Table 5 The averages I1 (2), 12 (2) and the non-zero eigenvalues h i ,  
h 2 computed with increasing number of iterations, for/3 = 0.3, 0.6, 
0.9 and 1,2. The first column includes the zeroth-order 
approximation 

Number of iterations 
Zeroth- 
order 1 2 3 

/3=0.3 /o,] 1.1347 1.1619 1.1592 1.1594 
Io, 2 0.7914 0.8113 0.8093 0.8095 
h t 0.7975 0,7924 0.7929 0.7929 
k 2 2.0413 2.0186 2.0208 2.0206 

= 0.6 /o, 1 0.7029 0,8355 0.8132 0.8171 
/0, 2 0.4768 0,5710 0.5550 0.5578 
h 1 0.8780 0.8539 0.8580 0.8573 
h 2 2.4027 2.2910 2.3098 2.3066 

/3 = 0.9 Io,] 0.3909 0.5778 0.5468 0.5521 
Io, 2 0.2583 0.3866 0.3651 0.3687 
k t 0.9339 0.9011 0.9066 0.9057 
k 2 2.6660 2.5076 2.5338 2.5293 

fl = 1.2 10,1 0.2148 0.3908 0.3663 0.3698 
Io, 2 0.1393 0.2567 0.2401 0.2424 
h I 0.9644 0.9343 0.9386 0.9380 
h 2 2.8158 2.6657 2.6866 2.6836 

formulas. These results define the zeroth-order averages 
I~,~. The substitution of these quantities in equations (9) 
and (11) starts an iterative procedure. 

The zeroth-order averages I (~  (m= 1, 2 . . . . .  N) was 
computed for chains with N = Z - 1 = 2, 4, 6 and 8 links as 
functions of/~. The hydrodynamic interaction parameter 
was chosen: h* =0.25. All the integrals were performed 
with 12-points Gauss-Laguerre quadrature routine and 
the results are collected in Tables 1~,. The averages I~oN] 
are plotted in Figure 1 as a function of the scaled rate of 
shear/~1-a/2(°) where ~(o) is the lowest non-zero eige- - -  H ~  I , N ,  A1,N 
nvalue of HA for a given number of links N. The 
normalized averages 

i"~N~(//) = I})NNJ (/~) (23) 
I~N~(0) 

that are related to the inverse end-to-end distances are 
also shown in Figure 2. To this order, all the averages 
exhibit universal behaviour-independence with N =  
when plotted in terms of the scaled variable/~t. 

The effect of successive approximations is reported here 
for the simplest case N = 2. In Table 5, we reproduce the 
zeroth-order calculation, the resulting values of I~ 2), I(22), 
and the non-zero eigenvalues 21 and 22 obtained up to 
three iterations for ~=0.3, 0.6, 0.9 and 1.2. 

Table 5 shows that, for low values of/~, the zeroth-order 
approximation and the exact results agree within 2%. As/~ 
increases, the relative error in the averages grows up to 
50% in extreme conditions (/~ = 1.2), but the approximate 
eigenvalues 2 t, 22 differ from the exact ones by less than 
5%. This behaviour is also present in chains with a higher 
number of links, and make the zeroth-order approxi- 
mation a good starting point to study the gradient 
dependence of the intrinsic viscosity of polymer 
solutions 8. 

CONCLUSIONS 

A method was developed to evaluate inverse interbead 
distances in the frame of the elastic necklace model with a 
finite number of beads, but the inclusion of the internal 
viscosity offered no difficulty. As stated earlier, the author 
was only interested in the influence of a transverse 
gradient flow on a polymer chain with scalar hydrody- 
namic interactions. Any consideration of the actual 
anisotropy of the interactions is beyond the scope of this 
paper. A full discussion on the gradient dependence of the 
dynamic properties of polymer solutions with the nec- 
klace model will be published elsewhere. 
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